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A number of polyprenylated phloroglucinol natural products
bearing densely functionalized bicyclo[3.3.1]Jnonane-1,3,5-trione
core structures have been reported from plant sources (Figére 1).
These include clusianorieand its C7 epimeg,? isolated from the
floral resins ofClusiaspecies, nemorosor®* a regioisomer of.,
and the adamantane-containing polyprenylated phloroglucinol hy-
peribone K4.5 In light of the challenging structures and promising

. . C . clusianone 1 (75) "
biological activities of these compounds, a number of synthetic T-epi-clusianone 2 (7a)  "emerosone 3 hyperibone K 4
efforts have been reportédRecently, impressive syntheses #f){ Figure 1. Polyisoprenylated phloroglucinol natural products.

garsubellinA7 and @)-clusianonel® have been accomplished,
further underscoring interest in this target class. In this Communica- Scheme 1. Synthetic Plan for Clusianone
tion, we report our initial studies on the synthesis of polyprenylated

phloroglucinols employing a tandem alkylative dearomatization =

annulation process to rapidly construct the bicyclo[3.3.1]nonane- O O A
1,3,5-trione core. Ho O ™ aq KoM, 0°C

Our approach to clusianone (Figure1),and related polypre- I 40%
nylated phloroglucinols was inspired by biosynthetic considerdtions  clusiaphenone 85
as well as the facile alkylative dearomatization observed for
clusiaphenone B° (Scheme 1). Prenylation &f(prenyl bromide,
aq KOH) afforded6 (40% vyield)1® presumably through the
intermediacy of grandong!! This transformation underscored the (one
propensity for sequential bisalkylation of the phloroglucinol core ® 8
and suggested a concise approach to clusianone and related targets
involving al'kylative dear_oma_tizatieﬂannylat_ion. Recent repotts Scheme 2. Model Studies
have described sequential Michael-elimination reactions of enolates
with acrylates to prepare bicyclo[3.3.1]Jnonane core structures. On
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the basis of the alkylation sequense— 7 — 6, we considered OH o

whether an anionic speci@derived from clusiaphenone Bmay )\AB,

participate in conjugate addition with a Michael acceptor such as 4 oH 2. KOH,0°C LHMDS, THF, 0°C
9 to afford dearomatized produdtO. Intramolecular conjugate 12 45% 5 70%
addition completes the synthesis @GfL which possesses the clusiaphenone B

clusianone framework. comvex
The synthesis of the polyisoprenylated benzophenone clusiaphe \
none B5 commenced withC-prenylatiort® of acylphloroglucinol 0
12 (Scheme 2}# After considerable experimentation, we found that |y 14RH
treatment of5 with LIHMDS (3 equiv) followed by the addition M [ Q
of a-acetoxymethyl acrylated 322 (2 equiv) at 0°C led to an ) ) 15 R=E)\©
efficient, highly diastereoselective dearomatizati@mnulation 14 single diastereomer o
process in which an additional Michael-elimination event had
unexpectedly occurred to affortd (70% vyield). The backbone  poth equivalents of the Michael acceptor and base led to the
structure ofl4 was suggested by computational-assisted structure production 0f20 (41% yield) after enol methylation (entry 2). This
elucidation based ofH, *3C, *H-'H COSY, HMQC, and HMBC  result supports the lower reactivity of acrylonitriles as Michael
data’® The relative stereochemistry df4 was determined by  acceptors in comparison to acryldt8. Using the more sterically
acylation and X-ray crystal structure analysis of the derived hindereda-acetoxymethyl acceptd®®® (entry 3), annulation and
p-bromobenzoate est&b. The stereochemistry of the final Michael-  enol methylation were found to proceed cleanly to afford the

Addition

el L UL

Ph | Elimination MeO,C

c0,C

elimination event is likely dictated by the approachl8ffrom the clusianone-type compour®il and its epime22 (dr = 4:1). The
convex face of the enolate intermedia@which has been observed  stereochemical assignment 2 and 22 were based on NOE
for transformations in related compoun@s. experiments and comparison to coupling constants reportedl for

To evaluate the scope of the dearomatizatiannulation process,  and 2.6 Reactions of the electron deficient Michael acceptors
we examined the reaction of substituted phloroglucinols with a trifluoroethyl este23° (entry 4) and sulfon25t° (entry 5) afforded
variety of substituted.-acetoxyacrylates (Table 1). Phloroglucinol  products24 and 26 leading us to suspect epimerization of the C7
17 bearing an alkytaryl ketone reacted with3in a similar manner stereocenter during the tandem process (vide infra).
to 5 (LIHMDS, THF, 0 °C) to afford the bicyclo[3.3.1Jnonane To access clusianone, we considered use-atetoxy ena7:0
derivativel8 (entry 1). Reaction of acrylonitril&@9'> with 5 under in the annulation process to install an aldehyde handle for prenyl
similar conditions afforded a mixture of products. Reduction of installation (Scheme 3). Accordingly, treatmentafith KHMDS
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Table 1. Alkylative Dearomatization—Annulation

entry substrates Michael acceptors _conditions products yield(%)
OH O 2 equiv.
N OAc LiHMDS
HO OH ; (3 equiv)
1 COMe  THF, 0°C MeOC
17 13
OH O 1 equiv.
S O O OAc KHMDS
2 HO OH ): (2 equiv)
CN THF, 65°C
| 5 19
1 equiv.
AC KHMDS
3 5 v equlv)0 63" b
THF, 65°C
CO2Me MeO,C (B:x=4:1)
9
21 =Meozc)tL 22= MeOZC“?”'
1 equiv.
Ac KHMDS
(2 equiv)
4 5 THF, rt
CO,CH,CF3 F3CH,CO,C
23
1 equiv.
fc KHMDS
(2 equiv)
5 5 SOsPh THF, 65°C

25

aYield after enol methylation using TMSCHN2 equiv) andiPrEtN
(1.5 equiv).? Mixture of enol ether isomers produced, one shown for clarity.

Scheme 3. Synthesis of (+)-Clusianone

oo ) e
780
KHMDS, THF, 65°C THF,-78°C
2) TMSCHN,, iPraEtN 2 A0, IPLEIN, DMAP
2, iPr) CH,Ch, 0°Cto it
CHaCN/CH;0H ~ OHC HiCly, 0%C o
74%
54% 28
Q o 1) Pd(PPhs)s, HCO,NH,
toluene, 105°C LiOH, dioxane
A,77%
2) Grubbs 2nd or
generation cat. LiCl, DMSO
2-methyl-2-butene A, 69%

89%

(2.1 equiv) an®7 (1.1 equiv) in THF (65C) led to the generation
of desired annulation product. To facilitate isolation and further
characterization, enol methylation afford@8 as a mixture of

regioisomers (54% yield, two steps, one methyl ether isomer shown

for clarity). The addition of vinyl magnesium bromide to aldehyde
28, followed by acetylation of the emerged secondary alcohol,
afforded allylic acetat@9. Palladium-catalyzed formate reducttéon

of allylic acetate29 was followed by olefin cross-metathesis with
2-methyl-2-butene according to the Grubbs’s prot&ct afford
clusianone methyl ethe30 (80%, two steps). Final nucleophilic
demethylatioP?< generated £)-clusianone as a mixture of enol
tautomerso

Scheme 4. Access to an Adamantane Framework

H
1.5 equiv 27

F————=> _—
3 equiv KHMDS
THF, 0°C, 4h

1 equiv KHMDS
THF, 65°C

Table 1) and establish a possible route to adamantane-containing
polyprenylated phloroglucinols including hyperibone & Figure
1).

In summary, we have developed a concise approach to the
bicyclo[3.3.1]Jnonane framework of the polyprenylated phloroglu-
cinol natural products utilizing alkylative dearomatizaticannu-

lation. A related approach has been used to access an adamantane

structure with four all carbon quaternary centers formed in one step
from a phloroglucinol precursor. Further applications of the
methodology to the synthesis of additional polyprenylated phloro-
glucinol natural products are currently in progress and will be
reported in due course.
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